

www.iaset.us editor@iaset.us

ROLE OF API GATEWAY IN API DRIVEN ARCHITECTURE

Saveetha Rudramoorthy

Senior Architect/Middleware and Cloud Expert, Amadeus Labs, Bangalore, Karnataka, India

ABSTRACT

With the growth of microservices, IT industry is moving towards or rather already moved to API driven architecture. ‘API

First’ design approach is followed by all the API architects and developer, which ensures API contracts are created before

creating actual front-end or back-end microservices. With enormous growth of APIs, need for centralized control gates

which manages these APIs are also growing. API Gateways offers such a compelling functionality, which ensures all the

APIs spread across multiple domains and geographical regions are all created, published, maintained, monitored and

secured efficiently.

This white paper aims in detailing about the role API gateway plays in order to efficiently manage APIs and their

underneath services hence offering complete control and management of the same.

KEYWORDS: API, API Gateway, ESB, Micro gateway, Microservices, Middleware, OpenAPI, Servicemesh, Services

Article History

Received: 06 Jan 2021 | Revised: 16 Jan 2021 | Accepted: 23 Jan 2021

INTRODUCTION

Middleware today evolved from simple Application connectivity via B2B, EAI, ESB and to multi-connected application

and services on cloud platform over iPAAS. In the area of functionality and service offerings, middleware has grown from

simple file exchange messaging to SOA services, Microservices, Service endpoints and APIs. All these growth factors

emphasize one thing, how to simplify and access the service provided by providers on ‘On-Premise’ or over ‘Cloud’ across

multiple regions under one common umbrella.

Early 2000’s and up to 2010 one could think about ‘SOA’ which allows consumers to consume service offerings

via loosely coupled, vendor agnostic, self-contained services working on the principle of ‘set of services to provide

common functionalities’. Post 2010, ‘Microservices’ come to light wherein services are simpler, lightweight, fine-grained,

elastic, self-contained, loosely coupled working on the principle of ‘independent service for specific function’. Be it SOA

or Microservice, IT world always think about accessing this service in more normalized and uniform manner. APIs

emerged to address the very problem mentioned. APIs offer defined methods of communication, which enables end

consumer to interact with the services provided by service provider in seamless manner.

EVOLUTION OF GATEWAYS

‘Service proxy’ is very popular in the world of ESBs and SOA. Origin of gateway happened there. Earlier provider

services are abstracted with service proxies which ensures changes to the actual service does not impact consumer

International Journal of Computer
Science and Engineering (IJCSE)
ISSN(P): 2278–9960; ISSN(E): 2278–9979
Vol. 10, Issue 1, Jan–Jun 2021; 21–34
© IASET

22 Saveetha Rudramoorthy

Impact Factor (JCC): 7.8726 NAS Rating: 3.17

interfacing service. It was later realised that simple service proxy is not enough. Other additional features like access

control, load limiting, throttling, routing, registry etc. are required. That is when ‘SOA Service Gateways’ emerged. This

takes care of all the aspects of service management, right from basic service proxying to service identification, monitoring,

controlling, routing and management.

Once APIs emerge, we need the same controls to the APIs which will eventually be provided by API Gateways.

Figure 1: Evolution of API Gateway.

Both SOA Services and Microservices can be interfaced through SOAP and REST. Similarly, both SOA Service

Gateway and API Gateway can host both SOAP and REST services endpoints.

Why API Gateway

Knowing the importance of APIs, every company embraces API way of communication in all their business units to

simplify and standardize their service communication model. A medium sized company delivering few business

functionalities may generate more than 500+ APIs per month. APIs generated will grow in multitude of magnitude for a

bigger company.

Typical eCommerce systems have interactions between multiple capabilities like Product Listing, Order

Management, Supplier management, Pricing and Payment management etc. There may be multiple vendors involved in

providing these services over APIs to big eCommerce platform. But how will all the actors involved communicate each

other so that entire API life cycle (depicted below) is managed.

Figure 2: API Lifecycle.

Role of API Gateway in API Driven Architecture 23

www.iaset.us editor@iaset.us

APIs are complex and this complexity is compounded when these APIs are communicating with each other and

with external clients. ‘API Gateway’ acts as a gateway between APIs and clients interested in those APIs.

Where does API Gateway Fit?

API Gateway serves as ‘Central’ interface for all external communications into an enterprise. API Gateway is

even more important in microservices world as whole network of offerings consists of ‘N’ number of microservices

offering different endpoints, operations and Http methods.

Following diagram depicts how an API Gateway fit in overall landscape of microservices:

Public Cloud

Public Cloud

Public Cloud

Microservice

Application

Microservice

Application

Microservice

Application

Microservice

Application

Microservice

Application

Microservice

Application

Internal API

GATEWAY

External API

Gateway

Discover +
Register +
Read Doc

Configure

Develops

Consumes

In
te

rn
e

t
C

o
n

su
m

e
rs

Browser

Mobile Apps

Load Balancer

OpenAPI

Developer

Administrator

In
tr

a
n

e
t

C
o

n
su

m
e

rs Robotic

Applications

Internal API

GATEWAY

Private Cloud
Microservice

Application

Microservice

Application

Microservice

Application

Microservice

Application

Internal API

GATEWAY

Figure 3: API Gateway in Microservice Landscape.

APIs exposed to internet community can be offered over external API gateways, whereas ones consumed by

intranet applications can be offered over internal API gateways. An Organization can limit the APIs exposed to internet

community over external gateway. OpenAPI developer community/internet applications can access only those APIs

exposed over external API gateway.

Typically, an enterprise will deploy cluster of internal API Gateways ensuring high availability, whereby all the

API configurations are synchronized across the cluster. Any call from intranet application will be load balanced via load

balancer and reaches API Gateway cluster. Internal API gateway ensures APIs are maintained private to the organization

24 Saveetha Rudramoorthy

Impact Factor (JCC): 7.8726 NAS Rating: 3.17

and are not necessarily exposed to internet community. Communication over internal API gateway is quicker as internal

gateways are typically hosted closer to service providers. Also, security options and controls provided by internal gateway

can be different from those offered on external gateway.

APIs exposed to public will be accessible over ‘Developer portal’ through which API developer community can

discover or register to an API leveraging API documentation provided.

Role of API Gateway

Summary

Following is the summary of API Gateway features detailed inbelowsections:

Figure 4: Role of API Gateway.

Details

Following are detailed functional features expected out of an API gateway

Centralized API Management

API Gateway is heart of any enterprise which offers ‘Single point of Entry’ to access APIs offered across multiple

divisions and business units. Any private and partner APIs can be hosted on API gateway. API gateway is single source of

truth or registry of all APIs in an Organization.

Abstraction Layer

This is a typical requirement within any enterprise solution wherein service contract shared by service provider is

abstracted to service consumer. API Gateway behaves as central component providing service abstraction to service

consumers so that backend applications providing services (and APIs) are completely flexible to change their technical

implementation provided API endpoint shared to consumers remain same i.e. decoupling client interface from backend

implementation.

Role of API Gateway in API Driven Architecture 25

www.iaset.us editor@iaset.us

This is especially important in scenarios where the client applications are built by developers outside of the

organization that cannot be forced to update to the greatest and latest APIs every time APIs are updated.

API Gateway also abstracts one or more methods/operations from clients. For example, in order to handle

‘FlightSchedule’ information, a microservice application can provide various functionalities and can expose following

REST APIs and Operations:

GET flight schedule of passenger flight: HTTP GET https://<DNS Name>/flightschedules/passenger/flights

Create new flight schedule of passenger flights: HTTP POST https://<DNS

ame>/flightschedules/passenger/flights

GET flight schedule of cargo flight: HTTP GET https://<DNS Name>/flightschedules/cargo/flights

UPDATE flight schedule of cargo flight: HTTP PUThttps://<DNS Name>/flightschedules/cargo/flights

Though the microservice exposes many endpoints, operations and HTTP methods, API Gateway can expose only

limited endpoints or operations or even HTTP methods. Which means consumers see only Search on passenger flight

schedule.

Following configuration snippet shows how API gateway limits number of HTTP methods exposed:

Access Control

All the APIs hosted on gateway is not necessarily to be shared with all types of end users. With various access control

options, an API gateway can decide to expose or shield set of APIs to various users like internal applications, partner

applications, internet applications etc. Each application within internal/partner applications/internet can as well have

different level access to APIs.

Following screenshot shows how one could allow or disallow access to specific endpoint or a method on an API

gateway:

Also, consumer application should have agreed security mechanisms with API Gateway in order to access the

APIs. Various authentication/authorization mechanisms could be api_key, subscription key, combination keys or Reference

tokens etc.

26 Saveetha Rudramoorthy

Impact Factor (JCC): 7.8726 NAS Rating: 3.17

Blacklisting and Whitelisting Requests

API Gateway can provide various set of policies which will ensure only specific consumer can access APIs. Following

policies comes in handy here:

Restrict caller IPs - Filters (allows/denies) calls from specific IP addresses and/or address ranges.

Check HTTP Header – Allows calls into API only with specific HTTP header or header value.

By blacklisting requests, backend resources can be protected from common attacks and abuse by users. For

example, if a malicious user misuses the system, all requests received from that user or specific application can be

completely blocked. In contrary to Blacklisting, it is possible to whitelist set of ips/users/applications which can access

APIs.

Load Limiting/Rate Limiting

API Gateway not only ensures only specific consumer can access APIs and but also at specific load limits. Mission critical

applications will have ‘High’ load limits on an API compare to public usage or to an ordinary application. Whenever

consumer application makes more calls in comparison to allotted number of calls, API gateway will restrict making further

calls and will allow only when consumer application considerably reduces the load until agreed load limit.

Different API Gateways have different mechanism and policies to handle. Following screenshot show how load

level can be defined on API gateway so that consumer application can consume only within defined limit:

Here ‘Throttle’ shows how many parallel calls specific application can make within a second. Quota shows upper

limit of calls specific application can make in agreeable Quota period.

Throttling calls to Backends

Implementations of backend service may have limitations to handle parallel calls beyond certain limit. In such cases, API

gateway can throttle the calls hitting backend across all the consumers hence protecting backend services from unwanted

surge of load.

Securing the Endpoints

APIs and Endpoints exposed on gateway can be made accessible only for reliable users. These users share the acceptable

contract with API gateway so that APIs can be accessed. An API Gateway can have one or more following means of

securing an endpoint:

Role of API Gateway in API Driven Architecture 27

www.iaset.us editor@iaset.us

api_key

This is simplest form of authentication model on API which authenticates any user, developer or calling program to an

API. This is one time key generated for a specific user and usually never expires unless this key is been revoked by

gateway itself. API keys are passed while invoking a service endpoint over transport header or as URL parameter.

Following URL shows api_key being part of URL parameter as query string:

HTTP GET https://<DNS Name>/flightschedules/passenger/flights?api_key=xyz1234589

‘Api-key’ is typically used as authentication mechanism for robotic users than human users. This is not considered

as most secure mechanism as there is possibility of ‘Man-in-middle’ attack and key can be stolen.

OAuth2.0

The API Gateway can use the OAuth 2.0 protocol for authentication and authorization. The API Gateway can act as both

OAuth 2.0 Authorization Server and Resource Server (as it is proxying the provider resources). With the support for

OAuth2.0 and several grant types, API gateway can authenticate and authorize various users like Brower based application,

native mobile application, user agents, web server etc. Various grant types supported by APIgateway are

• Authorization Code

• Implicit

• Password

• Client Credentials

• JWT etc.

Client Application

API GATEWAY

Authorization Server/

Resource Server

User (Resource Owner)

Access Service

Authorization

Grant

Validate Token &

Access to

Functional Service

Protected Resources / Backend

Services

Microservice application

Cloud based services

Services deployed on ESB

�.

Embed Token &

Accesses Protected Resources

Issues Access Tokens

13

4

2A

7
Obtain Authorization Grant

Obtain Authorization Grant

2B

Authorization Grant
5

6

Reply From

 Functional Service

8

Functional Reply

9

Figure 5: Authorization using OAuth 2.0.

As depicted in the above picture, a resource owner typically an end user connects to any client application for a

service. For example, above scenario can be explained as follows:

28 Saveetha Rudramoorthy

Impact Factor (JCC): 7.8726 NAS Rating: 3.17

• An end user connects to ‘chatbot’ for enquiring flight schedules. Chatbot application acts as client application

here.

• Client application sends request to authorization server (part of API Gateway) that will in turn ask the

user/Resource owner to identify and give consent so that the client application can act on user’s behalf.

• End user authenticates himself and grants authorization to client application.

• Upon receiving ‘Authorization Grant’ from user, client application requests an access token by authenticating

with the authorization server and presenting the authorization grant.

• The API Gateway (‘Authorization server’) authenticates the client and validates the authorization grant, and if

valid, issues an access token (OAuth2.0).

• Client application will then embed issued access token in the request and makes API call to protected resource

hosted on Api gateway i.e. flight schedule service here

• APIgateway (‘Resource Server’ here) validates token and in turn will communicate with actual backend service

i.e. flight schedule service and re-directs the response to ‘chatbot’ client.

Key+Secret

Gateways also provide Hashed Secret Keys to authenticate API users

Subscription Key

API Gateways on cloud like Azure supports ‘Subscription Key’ based authentication and authorization. Client applications

that need to consume the published APIs must include a valid subscription key in their HTTP requests. This model

mandates user to have cloud subscription with the provider.

Basic Authentication

Basic authentication is a simple HTTP authentication scheme in which the request will contain an authorization header

with a valid base64 encoded username and password. API Gateway validates requests with base64 encoded user details

which is sent over “Authorization” header and allows calls to hit backend services.

Custom

Any custom way to authenticate a client call before accessing an API. This can be leveraged if organization has specific

legal restrictions and users to be authenticated against corporate AD/LDAP solutions or over special certificates.

Caching

In order to reduce the latency and strain on service provider, an API gateway provides ‘Caching’ which could

• Cache Replies getting out of gateway ensuring that client will get response from gateway rather than hitting

backend every time. This feature is very useful when static content or content which is rarely changing is provided

by backend. ‘TimeToLive’ (TTL) set on APIgateway ensures how often cached contents should be refreshed.

• Cache Headers which will ensure only specific headers are cached.

• Custom Caching enabling user to define their own caching elements and controls.

Role of API Gateway in API Driven Architecture 29

www.iaset.us editor@iaset.us

Support for Multiple API Versions and Revisions

API Gateway should also seamlessly support hosting multiple versions of an API and should control access on API version

level as well. This enables few clients to stick to older version of APIs wherein clients will to make change and obtain

newer features can use new version of API.

Revisions are used when APIs are already in use but still provider want to activate new revision of same API. In

such cases, new revision will be made active and others will be made in-active.

Developer Portal

OpenAPI

As APIs are becoming primary interface for services, it is eminent that these APIs are opened for public usage. OpenAPIs

are publicly available APIs that provides developers with programmatic access to a proprietary software application or web

service. OpenAPIs are typically backed by open data and are openforprivate/public/partner usage. Also, OpenAPIs are

based on Open standard and specification.

Following are the benefits an organization can gain from OpenAPI:

• Faster innovation as more people can contribute to organization success

• Companies can create better products while standing out from the competition

• OpenAPIs are used and backed by many big companies and are their condensed knowledge of building thousands

of APIs over the years. This knowledge is a great asset for anyone before starting to write their first API

• As OpenAPIs are based on standards, it is easy for anyone to obtain any shared API and leverage them from day

1.

Portal

Developer portal is the face of APIs provided by an Organization which enables any internal, partner and third-party

developers to access the APIs. Any application developer should connect to portal to learn about offered APIs. From

developer portal, one could

• Register their application.

• Create token required to access APIs.

• View all the exposed APIs and Documentation associated with APIs, which is adhered to OpenAPI/Swagger

specifications.

• Can view their usage of APIs in terms of traffic and latency.

• Play with exposed APIs before using it in their applications.

• Obtain programmatic stubs to connect to API in various programming languages.

• Can connect to Blogs, Webinars, Forums around APIs.

• Can connect to communities exposed where they can ask questions or provide inputs.

30 Saveetha Rudramoorthy

Impact Factor (JCC): 7.8726 NAS Rating: 3.17

Monitoring and Reporting

As APIs are exposed to different types of users, it is vital to analyse all the traffic handled by the gateway. Gateways

typically provide multiple views on report data:

• High Level Executive View: Summary view of APIs with metrics and trends which can be shared with

stakeholder audiences.

Report View: These reports provide second level detailed view by which summary of all Successful and

Unsuccessful API calls are shown. Apart from that traffic distribution across all the APIs, Endpoints and Operations can be

explored. Also, it would be interesting to obtain details up to user or application or api_key level. These reports can be

exported into excel file or other apps through which other dimensions can be created.

• Low Level Call Details: Gateways also provides means to trace every API call detail entering into the system

through which issues can be quickly troubleshot. It gives detailed information about how requests and responses

looked as they pass through different points. Ideally this is recommended to be enabled only on Non-Production

environments and for shorter periods as this feature will drastically impacts performance of APIgateway.

Customizations

Other than passing through the calls from clients, an APIgateway can involve in ‘Mini-ESB’ activities like validation,

transformation, caching, content-based routing, retry customizations etc.

Validations: Validate header elements to enforce specific header or value of header. Also, validate authorization

token present in the request.

Transformations: Transform Request or Reply data before it hits backend or client. Transformations could be for

• Converting JSON to XML or vice-versa

• Convert SOAP to REST or vice-versa

• Content replacement based on XSLTs

• Set additional HTTP header or query parameter or to the extent of mocking entire message structure

Role of API Gateway in API Driven Architecture

www.iaset.us

Content Based Routing: Route to specific backend URL based on HTTP header or body structure

Monetize

As an API provider organization might want to monetize their APIs so that they can generate

APIs. With Gateways capabilities to control the access of APIs, organization can share their enterprise APIs only to the

users who are willing to pay.

Beyond API Gateway

API Gateways have evolved from 1st generation Service pro

‘Micro Gateways’.

Microgateway (also called as ‘Edge’ gateway)

policies and business logic at or near the service endpoints. Micr

architecture, focusing on API gateway per microservice or set of microservices. Here team responsible for delivering

microservices will also manage their microservices over microgateways. In contrary to AP

de-centralized, scalable and light weight.

‘Service Mesh’ is another component very popular in API world. Service mesh is used primarily in service

service communications. Security, Observability, Error handling, Load Balancing, Service discovery, Routing etc. are

handled by service mesh as a side-car implementation of actual service.

Role of API Gateway in API Driven Architecture

Route to specific backend URL based on HTTP header or body structure

As an API provider organization might want to monetize their APIs so that they can generate

APIs. With Gateways capabilities to control the access of APIs, organization can share their enterprise APIs only to the

generation Service proxies through 2nd generate API Gateways into 3

Microgateway (also called as ‘Edge’ gateway) is a lightweight, distributed API proxy that is designed to enforce

policies and business logic at or near the service endpoints. Microgateways are specially designed for microservices

architecture, focusing on API gateway per microservice or set of microservices. Here team responsible for delivering

microservices will also manage their microservices over microgateways. In contrary to API Gateways, micro gateways are

centralized, scalable and light weight.

Figure 6: Micro Gateway.

‘Service Mesh’ is another component very popular in API world. Service mesh is used primarily in service

communications. Security, Observability, Error handling, Load Balancing, Service discovery, Routing etc. are

car implementation of actual service.

 31

 editor@iaset.us

Route to specific backend URL based on HTTP header or body structure.

As an API provider organization might want to monetize their APIs so that they can generate revenue for the use of their

APIs. With Gateways capabilities to control the access of APIs, organization can share their enterprise APIs only to the

generate API Gateways into 3rd generation

is a lightweight, distributed API proxy that is designed to enforce

ogateways are specially designed for microservices

architecture, focusing on API gateway per microservice or set of microservices. Here team responsible for delivering

I Gateways, micro gateways are

‘Service Mesh’ is another component very popular in API world. Service mesh is used primarily in service-to-

communications. Security, Observability, Error handling, Load Balancing, Service discovery, Routing etc. are

32 Saveetha Rudramoorthy

Impact Factor (JCC): 7.8726 NAS Rating: 3.17

Table 1
Service Mesh API Gateway Micro Gateway

Service Mesh is the layer of communication
between microservices. Service mesh facilitates
service to service network communication using
standard methodologies.

Acts as a central gateway
between APIs and clients
directly requesting services

API microgateway is a proxy
which sits close to the
microservice.

Decentralized sidecar deployment model that
can be adopted and enforced on every service

Heavy weight API proxy
where all APIs are centrally
managed

Light weight API proxies,
typically distributed and
deployed closer to service
endpoints

Focusing on brokering between internal
resources

Maps external traffic to
internal resources

Mapstraffic received to internal
resources

Sits between network and application. No real
business notion of the solution.

Exposes APIs to service
specific business function

Serve specific business function
like API Gateway

Service connectivity over HTTP and other TCP
traffic like MQ/JMS/Web socket etc.

Supports connectivity
primarily over Http

Supports connectivity primarily
over Http

Supports both Layer4 and Layer 7 traffic
policies

Supports Layer 7 traffic
policies

Supports Layer 7 traffic policies

Does not meant to manage API Lifecycle
Product is meant for
complete API life cycle
management

Supports API life cycle

CONCLUSIONS

Gateways are the best deployment option for larger businesses and teams that have more existing resources to expose.

Rolling own management tool for every API become over-whelming for any Organization. Hence Organization should

leverage API Gateway which acts as ‘Single point of entry’ for all consumer communications.

Based on detailed analysis, it is very evident that API Gateway acts as central entry point into any enterprise API

ecosystem. APIs are grown multi-fold and it is MUST for us to leverage API Gateways and reap complete benefits

provided by API Gateways.

REFERENCES

1. https://www.gartner.com/doc/reprints?id=1-244J49X4&ct=200909&st=sb

2. https://www.tibco.com/api-led-integration

3. https://docs.microsoft.com/en-us/azure/api-management/api-management-key-concepts

4. https://tools.ietf.org/html/rfc6749#page-6

5. https://medium.com/api-integration-essentials/api-gateway-vs-microgateway-microservices-gateway-

e8fbbd8ba9c0

AUTHOR DETAILS

Saveetha Rudramoorthy received the B.E. degree with specialization on Computer science from the University of Madras,

India, in 2000. Saveetha is a Senior Architect, Enterprise Integration and Middleware Expert with Amadeus Labs based out

of Bangalore, Karnataka. She is AWS cloud certified and Tibco, WebMethods certified with over 20 years of experience in

cloud, enterprise integration and middleware across domains like Telecom and Airline.

Role of API Gateway in API Driven Architecture 33

www.iaset.us editor@iaset.us

You can find Saveetha on LinkedIn: https://www.linkedin.com/in/saveetha-rudramoorthy-06aa296

